Isom Herron

Professor, Mathematical Sciences


Ph.D., Johns Hopkins University, 1973

Research Focus
  • The theory of the stability of fluid flows.
  • Common applications are to phenomena in the atmosphere, the oceans, to problems of the motion of ships and aircraft and to internal machinery.
  • Modern approaches involve new techniques in operator theory, energy methods and dynamical systems.
  • Current research interests are in (i) stability of rotating magneto-hydrodynamic flows, (ii) more complicated geophysical flows such as groundwater, for which mathematical models are still being developed.
Select Works
  • " Strong exchange of stabilities in rapidly rotating parabolic Poiseuille flow" Applied Mathematics Letters, Vol. 48, Oct. 2015, pp. 156-161.
  • “Solving singular boundary value problems for ordinary differential equations” Caribb. J. Math. Comput. Sci.15, 2013, pp. 1–30.
  • “Exchange of stabilities in Couette flow between cylinders with Navier-slip conditions” Quarterly of Applied Mathematics Vol. LXX, Number 4, Dec. 2012, pp. 743–758 (with Pablo Suárez).
  • "Gauging magnetorotational instability" Journal of Applied Mathematics and Physics (Z. Angew. Math. Phys.) Vol. 61, Number 4, pp. 663-672, 2010 (with Jeremy Goodman).