Kristin Johnson

About

More about Kristin N. Johnson-Finn

 ("Johnson-Finn" is the preferred name in publications and professional settings over "Johnson") 

The Chemical Lens: The Bridge between Geology and Chemistry

Research in the Johnson-Finn laboratory bridges the divide between organic chemistry and geology, which is a useful perspective when pursuing the fate of organic compounds in geologic settings, astrobiology biosignatures, questions of origins of life and more!  By bringing a chemist’s perspective, our understanding of observations from these systems can expand beyond what has been accomplished before. The interdisciplinary approach opens pathways to new information that we cannot pursue otherwise and allows collaboration with a diverse variety of different researchers. 

Because of the fundamental nature of this research, it has many applications.  

Professor Johnson-Finn is a faculty member of the RARE (Rensselaer Astrobiology Research and Education) Center and a Co-I of a NASA funded research grant involving collaborators across the country titled "Earth First Origins" (EFO).  The EFO focuses on understanding the connection between geologic environments and the emergence of life through observations, modelling, and experiments.  Link to RARE flyer

Pathways: The Unification of Chemistry, Geology, Astrobiology & Processes on Earth

Missions to the icy moons of Europa and Enceladus, explorers of organic sediments on the ocean floor, engineers developing organic synthesis methods in batch reactors, and researchers focused on finding the first origins of life all need a detailed map of reactions at different parameter space. Detailed pathway mapping through a combination of experimental results and theoretical calculation can shine light on the dark forest of unexplored parameter space waiting to be pursued in any environment where organic compounds and geology result in a complex mixing history.  

Potential collaborators and students unafraid to help dig into the weeds of these problems are welcome to stop by for a chat!  

Education & Training
  • Research Scientist (2018 - 2022) Earth-Life Science Institute: Tokyo Institute of Technology, Tokyo, Japan.
  • Ph.D. (2017) Department of Chemistry & Biochemistry / School of Molecular Sciences: Arizona State University, Tempe, AZ, USA.
  • B.S. (2010) Department of Chemistry: Youngstown State University, Youngstown, OH, USA.  (Minors in Mathematics and Geology)
Other affililations: Earth and Environmental Sciences

Research

PENGUIN LOGO

 

 

 

People 
Exploring 
Nascent 
Geomimicry 
Utilizing 
Investigative 
Networks 

Astrobiology and the interface between Chemistry & Geology

  • Definitions of "Astrobiology":

Though the term 'astrobiology' contains the word 'biology', the field of study is not limited to only specimens that are themselves classified as living.  Instead it is a broad and encompassing field involving many different disciplines and areas of research.

A good description can be found through the University of Washington [link]:

“Astrobiology is the study of life in the universe. 

The search for life beyond the Earth requires an understanding of life, and the nature of the environments that support it, as well as planetary, planetary system and stellar interactions and processes.   

To provide this understanding, astrobiology combines the knowledge and techniques from many fields, including astronomy, biology, chemistry, geology, atmospheric science, oceanography and aeronautical engineering.”

  • Where the Johnson-Finn (PENGUIN) Group Fits in Astrobiology Research:

Chemists, astronomers, and geologists at RPI follow a history of research in astrobiology and pre-biotic chemistry (the field of research exploring the types of chemistry that could have existed before life emerged).  Science itself is an ever-evolving organism, adapting to new information, new techniques, and new problems in need of solutions.  

Currently, the newest evolution of astrobiology research at RPI is through RARE (Rensselaer Astrobiology & Research Education) Center.  A collaboration between the departments of Earth & Environmental Science and Chemistry & Chemical Biology funded by NASA and RPI.  

Professor Johnson-Finn is a faculty member of the RARE Center and a Co-I of a NASA funded research grant involving collaborators across the country titled "Earth First Origins" (EFO).  The EFO focuses on understanding the connection between geologic environments and the emergence of life through observations, modelling, and experiments.  Link to RARE flyer

Sitting at the junction of organic chemistry and geology, the Johnson-Finn group aims to answer relevant questions as to the roles that geology plays in the pathways of organic compounds through experiments.

When the astrobiology community was asked in recent years to define goals and objectives for future research, "Identifying abiotic sources of organic compounds" and "Synthesis and function of macromolecules in the origin of life" topped the list.  [NASA Astrobiology]

The Johnson-Finn research group is focused on exploring the fundamental chemistry that is available to organic compounds in geologic settings, primarily the role that minerals (the simplest chemical component of rocks) play either as catalyst or reagent in aqueous organic reactions.  Through a combination of hydrothermal experiments, electrochemical approaches, and thermodynamic modelling, reaction pathways for different classes of organic compounds can be traced in the formation of a larger organic chemical framework.

Beyond Astrobiology / Exploring Problems on Earth

Our laboratory is looking to pursue research questions beyond our astrobiology work, probing fundamental abiotic processes that exist anywhere in the universe or pivoting back to Earth to find solutions related to the larger environmental issues we face today.  The fundamental approach provides a powerful starting position to comprehend and explore how different environments evolve at a molecular level.  Students help to guide these questions and drive our understanding forward!  

Techniques of the Laboratory (Both Physical and Virtual)

The PENGUIN laboratories (currently under renovation) will house experimental vessels that can explore different fundamental parameters related to aqueous organic reactions.  The goal of all studies in this group will be to gather information about the kinetics and mechanisms of different organic reaction paths through either experimental or theoretical means.  The combination of experimental expertise with theoretical guidance is most powerful.  

The three main approaches utilized in the group include (1) hydrothermal chemistry, (2) electrochemistry, and (3) thermodynamic modelling.  Interested students will undertake projects using one or more of these techniques to pursue questions related to specific geologic, environmental, or experimental fields of study.  

  •  Hydrothermal chemistry:

Water that is hot (described as "hydrothermal") has different properties from the water that we observe at ambient conditions.  The reaction paths for organic compounds, especially in contact with different mineral surfaces available in naturally occurring geologic settings, is in need of detailed chemical cartographers, looking to map these environments through experiment.  To perform such experiments requires the use of high temperature and high pressure reaction vessels and experimental methods designed to withstand such conditions while keeping the reaction mixture intact.

  • Electrochemistry:

To observe redox reactions requires the ability to control and monitor the flow of electrons.  Electrochemistry is a useful tool for exploring reactions that require the transfer of those electrons to proceed.  Initial inspirations for this work involve the use of semiconductor minerals as catalytic drivers of organic redox reactions.  How those reactions may occur at hydrothermal conditions, influence the available biosignatures observed on other planets, or be harnesses for the purpose of sustainable chemistry are all of interest and under pursuit by researchers in this group.

  • Thermodynamic Calculations:

The analytical chemist Izaak M. Kolthoff popularized the maxim inherited from his PhD advisor N. Schoorl: "Theory guides; experiment decides." Thermodynamic tools such as CHNOSZ https://chnosz.net/ can help to guide different experimental and analytical research by providing insight into what might exist and what definitely does not exist from an energetics perspective.  Involving programming, data management, and database building, these calculations serve as a solid foundation upon which experimental studied can thrive and expand.    

Laboratory facilities will be located in the 1st floor of the Cogswell Laboratory building.  

Primary Research Focus
hydrothermal chemistry, electrochemistry, geo-catalysis, organic geochemistry, thermodynamics, astrobiology
Other Focus Areas

Chemistry is often defined as "The Central Science".  With the combination of the geologic / solid state perspective collaborations with other disciplines become possible.  Currently, initial collaboration have begun with a faculty member in architecture.  Our part is to characterize and understand the role that the inorganic binder had in carbon sequestration. 

Any interested undergraduate students should reach out to ask about potential possibilities to get involved.  

Teaching

Current Courses

Equilibrium and Quantitative Analysis (CHEM 2110)

Readings in Astrobiology and the Origins of Life (ISCI 4510/6510) 

Hydrothermal Experimental Methods (CHEM 4965 & 6965 / ERTH 4965 & 6965 cross-listed course)

Organic Chemistry of Earth and the Solar System (CHEM 4000/6000 cross-listed course / currently in development)

Publications

Yamei Li, Norio Kitadai, Yasuhito Sekine, Hiroyuki Kurokawa, Yuko Nakano, Kristin Johnson-Finn
Nature Communications
, 13
, 2022
.
Tony Z. Jia, Kristin N. Johnson-Finn, Osama M. Alian, Irene Bonati, Kosuke Fujishima, Natalie Grefenstette, Thilina Heenatigala, Yamei Li, Natsumi Noda, Petar I. Penev, Paula Prondzinsky, Harrison B. Smith
International Journal of Astrobiology
, 21
, 2022
, pp.497-523
.
Kristin N. Johnson-Finn, Lynda B. Williams, Ian R. Gould, Hilairy E. Hartnett, Everett L. Shock
ACS Earth and Space Chemistry
, 5
, 2021
, pp.2715-2728
.
Kristin N. Johnson-Finn, Ian R. Gould, Lynda B. Williams, Hilairy E. Hartnett, Everett L. Shock
ACS Earth and Space Chemistry
, 4
, 2020
, pp.2082-2095
.

View All Scopus Publications

Group Members

Having only started in Fall 2022, our research group is under construction and actively recruiting!

If you are interested in joining the Johnson-Finn research group, reach out and start a conversation! 

 

GRADUATE STUDENT RESEARCHERS:

Marisa Moss - (2nd year PhD student) - Department of Chemical and Biological Engineering

Marisa Moss smiling

 

Selmina Huskic - (1st year PhD student) - Department of Chemistry and Chemical Biology

 

POSTDOCTORAL RESEARCHERS: 

Wataru Takahagi, PhD - Rensselaer Astrobiology Research & Education (RARE) Center

 

UNDERGRADUATE STUDENT RESEARCHERS:

Brianna Casey - (sophomore) - Department of Chemistry and Chemical Biology

Audrey Bors - (junior) - Department of Chemistry and Chemical Biology (Industrial track)

Karl Veigl - (junior) - Department of Biology (Biochemistry & Biophysics)

 

PAST MEMBERS:

Ian DeFilippis - (undergrad) - Department of Chemical and Biological Engineering

Zella Evans - (undergrad) - Department of Chemistry and Chemical Biology

 

Bio

Bio: Professor Kristin Johnson-Finn is an interdisciplinary scientist at heart.  Combining her desire to understand the world through a chemical lens with her love of rocks and minerals (with a collection to match), she began a research career combining both interests through a circuitous route which has consequentially prepared her to explore complex problems.  Her career path has led her to find a home at RPI as a tenure-track assistant professor where the interdisciplinary perspective in strongly encouraged.  

During her undergraduate at Youngstown State University, the future Dr. Johnson-Finn explored her multi-faceted interest in chemistry through different research projects in biochemistry, organic chemistry, and inorganic chemistry while also taking supplemental minors in mathematics and geology (with the occasional astronomy class thrown in). Encouraged by her mineralogy professor to apply (due to her interest in meteorites), she became a LPI USRA intern at NASA Johnson Space Center in 2010 where she spent the summer investigating meteorites from the asteroid 4-Vesta. 

Driven to find a way to combine her interdisciplinary interests with the exploration of space, she was thrilled to discover the field of Astrobiology during her search for graduate programs. Her interests in organic geochemistry and astrobiology took her to the Department of Chemistry at Arizona State University where she joined the GEOPIG (Group Exploring Organic Processes in Geochemistry) research group of Professor Everett Shock, an aqueous organic geochemist and thermodynamicist. In addition to being part of GEOPIG, she spent her PhD working as part of the collaborative HOG (Hydrothermal Organic Geochemistry) project where she benefited from the combined knowledge of professors from chemistry and geology every week through detail-oriented discussions with peers. For her dissertation, she went on to explore the reaction pathways of aromatic carboxylic acids in the presence of different metal oxide minerals at hydrothermal conditions which led her to have many questions that could not yet be explained with hydrothermal experimental methods alone. 

After receiving her PhD, Dr. Johnson-Finn's research questions compelled her to cross the Pacific Ocean to collaborate with researchers at the Earth-Life Science Institute (ELSI) in Tokyo, Japan. As a research scientist, she continued her hydrothermal experimental research using new experimental techniques, expanding her expertise to include electrochemistry of organic and mineral reactions, and dabbling in analytical methods such as magnetometry. Now outfitted with an international knowledge of the field of astrobiology and many wonderful colleagues across the globe, Dr. Johnson-Finn has become a tenure-track assistant professor at RPI where she plans to expand and continue her exploration of the planet through a chemist's perspective.  

PENGUIN story

Sometimes I get asked by students why I call my research group PENGUIN.

 

Well, the truth is that the idea started for me when I was 5 years old.  Around that time, my father began attending a local university as a non-traditional student.  Seeing the university through his eyes, I saw the campus as a place capable of granting us a new beginning, changing our lives for the better.  Universities seemed like an oasis filled with freely shared ideas, information, and opportunities to keep learning. 

Seeing how it changed my father’s life, I wanted to become part of that journey for other people.  I wanted to help change someone’s life for the better, serving as a guide in the moments when they found they needed direction. As someone with a natural inclination toward study and teaching, I decided that I wanted to be a university professor… without fully understanding what that meant, or even how to get there.  (Luckily, I learned along the way.)

When the time came to go to college myself, I decided to attend the same alma mater as my father, Youngstown State University, whose mascot was the penguin. 

I call my lab PENGUIN in honor of the place that first lit the spark in me to pursue a life in service to education and learning as a university professor.  I hope the name will serve to remind me to instill a love of learning through example on life’s journey.  And to never lose the spark of curiosity to always learn more. 

Back to top