Donald Schwendeman

Professor, Department Head and Director, Center for Modeling, Optimization and Computational Analysis (MOCA), Mathematical Sciences

Dr. Schwendeman received his B.S.E. in Aerospace Engineering from the University of Michigan, and earned his Ph.D. in Applied Mathematics at the California Institute of Technology (Caltech) under the supervision of Professor G.B. Whitham, FRS.  Dr. Schwendeman took a one-year postdoctoral research position at Caltech working with Professor H.B. Keller, before joining the faculty in the Department of Mathematical Sciences at Rensselaer as an assistant professor in August, 1987.  Dr. Schwendeman received promotions to associate professor with tenure and then professor, and was named the Head of the Department of Mathematical Sciences in 2012.

Dr. Schwendeman's research focuses on the development and analysis of numerical methods for systems of partial differential equations (PDEs) that arise in applications of science and engineering.  A significant portion of his work has centered around the development of numerical methods for systems of PDEs modeling wave phenomena in reactive and nonreactive flows.  This work has included numerical studies of shock wave focusing and convergence, transonic and hypersonic aerodynamics, and multi-phase and multi-material high-speed reactive flow.  In recent work, Dr. Schwendeman has developed a class of new numerical methods for fluid-structure interaction problems.  All of this work has been in collaboration with researchers at national labs (Los Alamos and Lawrence Livermore) and at Rensselaer.

Dr. Schwendeman is also actively involved in undergraduate and graduate education and career development.  He is a leader among the consortium of universities organizing the Mathematical Problems in Industry Workshop (1993-present), and the originator and lead organizer of the Graduate Student Mathematical Modeling Camp (2004-present).  Dr. Schwendeman is also an active member of the NSF-funded Research Training Grant (RTG) program in the department, which supports the research and education of several graduate students and postdoctoral research fellows.


B.S.E., Aerospace Engineering, University of Michigan, 1981

Ph.D., Applied Mathematics, California Institute of Technology, 1986

Research Focus
  • Numerical methods for PDEs
  • Fluid-structure interaction problems
  • Gas dynamics and wave propagation
  • Multi-scale and multiphase reactive flow
  • Adaptive and parallel algorithms
  • Mathematics for industrial applications
Select Works
  • J.W. Banks, W.D. Henshaw, D.W. Schwendeman and Qi Tang, A stable partitioned FSI algorithm for rigid bodies and incompressible flow. Part I: Model Problem Analysis, J. Computational Physics, 343 (2017), 432-468.
  • J.W. Banks, W.D. Henshaw, D.W. Schwendeman and Qi Tang, A stable partitioned FSI algorithm for rigid bodies and incompressible flow. Part II: General Formulation, J. Computational Physics, 343 (2017), 469-500.
  • F. Meng, J.W. Banks, W.D. Henshaw and D.W. Schwendeman, CHAMP: A Stable and Accurate Partitioned Algorithm for Conjugate Heat Transfer, J. Computational Physics, 344 (2017), 51-85.
  • J. Gambino, A.K. Kapila and D.W. Schwendeman, Sensitivity of run-to-detonation distance in practical explosives, Combustion Theory & Modeling, 20 (2016), 1088-1117.
  • L. Li, W.D. Henshaw, J.W. Banks, D.W. Schwendeman and G.A. Main, A stable partitioned FSI algorithm for incompressible flow and deforming beams, J. Comput. Physics, 312 (2016), 272-306.
  • J.W. Banks, W.D. Henshaw, A.K. Kapila and D.W. Schwendeman, An added-mass partition algorithm for fluid-structure interactions of compressible fluids and nonlinear solids, J. Comput. Physics, 305 (2016), 1037-1064.
  • A.K. Kapila, D.W. Schwendeman, J. Gambino and W.D. Henshaw, A Numerical Study of the Dynamics of Detonation Initiated by Cavity Collapse, Shock Waves, 25 (2015), 545-572.
  • D.W. Schwendeman, C.P. Please, B.S. Tilley and F. Hendriks, A homogenization analysis of the compressible flow between a slider and a moving rough surface, IMA J. Appl. Math., 80 (2015), 177-211.