Blanca Barquera

About

Dr. Barquera received her Ph.D. in Biochemistry from the National University of University of Mexico. Then she worked in the lab of Professor Robert Gennis at the University of Illinois-Urbana, supported by an NIH-Forgarty postdoctoral fellowship, and Professor Marten Wikstrom at the University of Helsinki, Finland. Dr. Barquera is a Professor at the Department of Biological Sciences and Chemistry and Chemical Biology. Dr. Barquera studies energy metabolism in bacteria using genetic and biochemical methods. Dr. Barquera’s work is supported by NIH and NSF.

Education & Training

Ph.D.  National Autonomous University of Mexico, 1991 - Biochemistry

M.S. National Autonomous University of Mexico, 1987 - Biochemistry

B.S. National Autonomous University of Mexico, 1985 - Chemistry

Postdoctoral Research & Training

Postdoctoral Fellow, University of Illinois at Urbana-Champaign, 1990-1994 - Biochemistry

Research Scientist, University of Helsinki, 1995-1998 - Medical Chemistry

Other affililations: Chemistry and Chemical Biology

Research

Bacteria are the most abundant organisms on earth. They are found almost every possible biological niche, from ordinary soil to deep oceans and geological formations. They also interact with the human body; some bacteria are essential for life while others can be deadly. The ability of bacteria to flourish in such a wide range of environments is due in large part to the enzymes that populate their cell membranes. These enzymes make up the active interface between the cell and the environment. One of their roles is to ensure the interior of the cell is a hospitable place for the biochemistry of life in spite of changing and often hostile conditions outside. Among the most important of these membrane enzymes are the ones that transport ions into and out of the cell. These ion transporters are essential for maintaining favorable concentrations of ions inside the cell, but ion transport is also at the heart of energy production in the cell. Transport of H+ and Na+ create gradients that provide energy for processes as diverse as motility of the cell, import of nutrients and extrusion of chemicals that are toxic to the cell--the latter is responsible for a significant class of antibiotic resistance. 

The focus of my research is the physiology and biochemistry that allow bacteria to adapt and proliferate in diverse environments. In particular, we are interested in understanding the role of ion gradients involved in producing energy and maintaining stable, favorable internal conditions in spite of changing environments.

We work on 3 interrelated projects: 1) Energy metabolism of the gut bacterium Bacteroides fragilis, where we are investigating a new paradigm in which this organism, previously classified as a strict anaerobe, actually depends on aerobic respiration for its survival and role in the community of intestinal microflora. 2) Adaptation to changing environments by the opportunistic pathogen Pseudomonas aeruginosa, focusing on enzymes that generate and consume the Na+ and H+ gradients and how these systems function and interoperate. 3) Functional and mechanistic studies of two redox-driven Na+ pumping enzymes: NQR and RNF from Vibrio cholerae and other bacteria. 

The projects in my laboratory range from basic microbiology, characterizing the physiology of bacteria and their interactions with other cells, to biophysical chemistry, spectroscopy (visible, fluorescence, FTIR, and EPR) and rapid kinetics in order to understand the molecular mechanisms of ion transport and energy production enzymes. We study Vibrio cholerae, the cause of the disease cholera, Pseudomonas aeruginosa which are implicated in cystic fibrosis, as well as Bacteroides fragilis, which are beneficial gut bacteria, and use infection models including mice, macrophages, and fruit flies. 

We are particularly interested in two enzymes: Na+-pumping NADH:quinone oxidoreductase (NQR), a respiratory enzyme found only in bacteria that uniquely pumps Na+ instead of H+, and Na+ pumping Ferredoxin:NAD oxidoreductase (RNF). These enzymes, are found in many pathogens, marine bacteria, and colon bacteria and are important for adaptation and proliferation of these organisms in diverse environments. In the case of NQR, my group defined the redox cofactors of the enzyme, their redox reactions, the pathway of electron transfer through these cofactors, and which of these electron transfer steps are linked to energy conservation. We are currently trying to understand the pathway that carries Na+ across the membrane and the mechanism that couples the redox reactions to this uphill transport of Na+. 

Other Focus Areas

bacterial metabolism, bioenergetics and membrane proteins, mechanistic enzymology, gut microbiota, microbial physiology

Teaching

Office Hours

By appointment

Current Courses

BIOL 4310/6310 - Microbiology

Microbiology is the study of “microscopic organisms,” including members of all the kingdoms of life. The course has two objectives: 1) Provide an overview of the diversity, genetics, and physiology of microorganisms. 2) Review current topics of investigation in Microbiology in detail. Microbes will be studied from a cellular and molecular perspective. This includes structure, nutrition, growth, control, classification, and genetics. This course will provide biology students the necessary background in bacterial genetics, pathogenic microbiology, prokaryotic physiology, eukaryotic microbiology, molecular biology, and microbial ecology.                             

BIOL 4350/6350 - Virology 

This course will provide an exploration of the essential aspects of virology. Introductory examination of viral structure, entry, and replication for each of the major classes of viruses serve as a foundation. Case studies will examine virus host interactions and strategies for prevention and intervention of viral infection. Additional topics include: emerging viruses, viral detection, viral extinction, beneficial use of viruses, modified viruses as research tools.

Publications

The following is a selection of recent publications in Scopus. Blanca Barquera has 78 indexed publications in the subjects of Biochemistry, Genetics and Molecular Biology, Immunology and Microbiology, Medicine.

Nicole L. Butler, Takeshi Ito, Sara Foreman, Joel E. Morgan, Dmitry Zagorevsky, Michael H. Malamy, Laurie E. Comstock, Blanca Barquera
Journal of Bacteriology
, 205
, 2023
.
Jun ichi Kishikawa, Moe Ishikawa, Takahiro Masuya, Masatoshi Murai, Yuki Kitazumi, Nicole L. Butler, Takayuki Kato, Blanca Barquera, Hideto Miyoshi
Nature Communications
, 13
, 2022
.
Moe Ishikawa, Takahiro Masuya, Seina Kuroda, Shinpei Uno, Nicole L. Butler, Sara Foreman, Masatoshi Murai, Blanca Barquera, Hideto Miyoshi
Biochimica et Biophysica Acta - Bioenergetics
, 1863
, 2022
.
Sara Foreman, Kristina Ferrara, Teri N. Hreha, Ana E. Duran-Pinedo, Jorge Frias-Lopez, Blanca Barquera
Journal of Bacteriology
, 203
, 2021
.
Moe Ishikawa, Takahiro Masuya, Hinako Tanaka, Wataru Aoki, Noam Hantman, Nicole L. Butler, Masatoshi Murai, Blanca Barquera, Hideto Miyoshi
Biochimica et Biophysica Acta - Bioenergetics
, 1862
, 2021
.
Nozomi Ando, Blanca Barquera, Douglas H. Bartlett, Eric Boyd, Audrey A. Burnim, Amanda S. Byer, Daniel Colman, Richard E. Gillilan, Martin Gruebele, George Makhatadze, Catherine A. Royer, Everett Shock, A. Joshua Wand, Maxwell B. Watkins
Annual Review of Biophysics
, 50
, 2021
, pp.343-372
.
Adilson José da Silva, Josivan de Souza Cunha, Teri Hreha, Kelli Cristina Micocci, Heloisa Sobreiro Selistre-de-Araujo, Blanca Barquera, Mattheos A.G. Koffas
Metabolic Engineering
, 64
, 2021
, pp.15-25
.
Teri N. Hreha, Sara Foreman, Ana Duran-Pinedo, Andrew R. Morris, Patricia Diaz-Rodriguez, J. Andrew Jones, Kristina Ferrara, Anais Bourges, Lauren Rodriguez, Mattheos A.G. Koffas, Mariah Hahn, Alan R. Hauser, Blanca Barquera
PLoS ONE
, 16
, 2021
.
Leonor García-Bayona, Michael J. Coyne, Noam Hantman, Paula Montero-Llopis, Salena S. Von, Takeshi Ito, Michael H. Malamy, Marek Basler, Blanca Barquera, Laurie E. Comstock
Proceedings of the National Academy of Sciences of the United States of America
, 117
, 2020
, pp.24484-24493
.
Takahiro Masuya, Yuki Sano, Hinako Tanaka, Nicole L. Butler, Takeshi Ito, Tatsuhiko Tosaki, Joel E. Morgan, Masatoshi Murai, Blanca Barquera, Hideto Miyoshi
Journal of Biological Chemistry
, 295
, 2020
, pp.12739-12754
.

View All Scopus Publications

News

Back to top