Marvin Bentley


Nearly every aspect of neuronal function depends on the accurate transport of membrane proteins to axons or dendrites. Axons conduct electrochemical action potentials and primarily send signals, whereas dendrites primarily receive signals. Because these two domains have distinctly different functions, they each require a specific complement of membrane proteins. These proteins are delivered to their cargo by vesicle transport. Vesicle carriers that contain axonal proteins are transported to the axon; vesicle carriers that contain dendritic proteins are transported to dendrites and excluded from the axon. This phenomenon of directed vesicle movement to dendrites or the axon is referred to as selective transport.

Understanding the molecular regulation of vesicle transport is a fundamental problem in neuroscience and cell biology and defects in vesicle transport are thought to underlie the axonal degeneration characteristic of many neurodegenerative diseases. Intracellular carriers are moved by motor proteins that generate locomotive force. One family of motor proteins are kinesins. Our long-term goal is to determine the molecular regulation of kinesin motors and understand how they confer specific transport behaviors to vesicles that move cargoes to axons and dendrites.

Our lab uses a variety of cell biological approaches to understand the molecular mechanisms that underlie intracellular vesicle transport. Primarily, we utilize live-cell fluorescent microscopy to track and measure individual vesicle carriers as they move inside cells. Our experiments also rely heavily on molecular biology, biochemistry, and tissue culture techniques. 

Dr. Bentley received his Ph.D. in 2010 in the laboratory of Jesse Hay at the University of Montana and completed a postdoc with Gary Banker at Oregon Health & Science University. He joined the faculty in the Department of Biological Sciences at the Rensselaer Polytechnic Institute in the summer of 2017. 

Education & Training

Ph.D., University of Montana, Cell Biology. 

Postdoctoral training, Oregon Healthy & Science University, Neuroscience and Cell Biology.


Other Focus Areas

Neuroscience, Cell Biology, Membrane trafficking, Molecular motors, Live-cell imaging


Nabb, A.T., and Bentley, M. (2022). NgCAM and VAMP2 reveal that direct delivery and dendritic degradation maintain axonal polarity. Mol. Biol. Cell. 33:ar3.

Frank, M., Nabb, A.T., Gilbert, S.P., and Bentley, M. (2022). Propofol attenuates kinesin-mediated axonal vesicle transport and fusion. Mol. Biol. Cell. 33:ar119.

Garbouchian, A., Montgomery, A.C., Gilbert, S.P., and Bentley, M. (2022). KAP is the neuronal organelle adaptor for Kinesin-2 KIF3AB and KIF3AC. Mol. Biol. Cell 33:ar133.  

Montgomery, A., Garbouchian, A., and Bentley, M. (2022). Visualizing vesicle-bound kinesins in cultured hippocampal neurons. Methods Mol. Biol. 2431, 239–247.

Frank, M., Citarella, C.G., Quinones, G.B., and Bentley, M. (2020). A novel labeling strategy reveals that myosin Va and myosin Vb bind the same dendritically polarized vesicle population. Traffic 21, 689–701.

Nabb, A.T., Frank, M., and Bentley, M. (2020). Smart motors and cargo steering drive kinesin-mediated selective transport. Mol. Cell. Neurosci. 103, 103464.

Yang, R., Bostick, Z., Garbouchian, A., Luisi, J., Banker, G., and Bentley, M. (2019). A novel strategy to visualize vesicle-bound kinesins reveals the diversity of kinesin-mediated transport. Traffic 20, 851–866.

Bentley, M., and Banker, G. (2016). The cellular mechanisms that maintain neuronal polarity. Nat. Rev. Neurosci. 17, 611–622.

Back to top